Monitoring Early-Stage Nanoparticle Assembly in Microdroplets by Optical Spectroscopy and SERS.
نویسندگان
چکیده
Microfluidic microdroplets have increasingly found application in biomolecular sensing as well as nanomaterials growth. More recently the synthesis of plasmonic nanostructures in microdroplets has led to surface-enhanced Raman spectroscopy (SERS)-based sensing applications. However, the study of nanoassembly in microdroplets has previously been hindered by the lack of on-chip characterization tools, particularly at early timescales. Enabled by a refractive index matching microdroplet formulation, dark-field spectroscopy is exploited to directly track the formation of nanometer-spaced gold nanoparticle assemblies in microdroplets. Measurements in flow provide millisecond time resolution through the assembly process, allowing identification of a regime where dimer formation dominates the dark-field scattering and SERS. Furthermore, it is shown that small numbers of nanoparticles can be isolated in microdroplets, paving the way for simple high-yield assembly, isolation, and sorting of few nanoparticle structures.
منابع مشابه
Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation.
We use optical tweezers to move single silver nanoparticles into near-field contact with immobilized particles, forming isolated surface-enhanced Raman spectroscopy (SERS) active Ag particle dimers. The surface-averaged SERS intensity increases by a factor approximately 20 upon dimerization. Electrodynamics calculations indicate that the final approach between the particles is due to "optical b...
متن کاملRaman-encoded microbeads for spectral multiplexing with SERS detection
Simultaneous detection of multiple molecular targets can greatly facilitate early diagnosis and drug discovery. Encoding micron-sized beads with optically active tags is one of the most popular methods to achieve multiplexing. Noble metal nanoparticle labels for optical detection by surface-enhanced Raman spectroscopy (SERS) exhibit narrow bandwidths, high photostability and intense Raman signa...
متن کاملOriented assembly of polyhedral plasmonic nanoparticle clusters.
Shaped colloids can be used as nanoscale building blocks for the construction of composite, functional materials that are completely assembled from the bottom up. Assemblies of noble metal nanostructures have unique optical properties that depend on key structural features requiring precise control of both position and connectivity spanning nanometer to micrometer length scales. Identifying and...
متن کاملGold nanoparticle incorporated inverse opal photonic crystal capillaries for optofluidic surface enhanced Raman spectroscopy.
Novel transducers are needed for point of care testing (POCT) devices which aim at facile, sensitive and quick acquisition of health related information. Recent advances in optofluidics offer tremendous opportunities for biological/chemical analysis using extremely small sample volumes. This paper demonstrates nanostructured capillary tubes for surface enhanced Raman spectroscopy (SERS) analysi...
متن کاملRole of the micro- and nanostructure in the performance of surface-enhanced Raman scattering substrates assembled from gold nanoparticles.
Highly active and stable substrates for surface-enhanced Raman scattering (SERS) can be fabricated by using colloidal crystals to template gold nanoparticles into structured porous films. The structure-dependent performance of these SERS substrates was systematically characterized with cyanide in continuous flow microfluidic chambers. A matrix of experiments was designed to isolate the SERS con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Small
دوره 12 13 شماره
صفحات -
تاریخ انتشار 2016